Interacciones entre cargas de igual y distinta naturaleza.
En física, carga eléctrica es una propiedad intrínseca de algunas partículas subatómicas que se manifiesta mediante atracciones y repulsiones que determinan las interacciones electromagnéticas entre ellas. La materia cargada eléctricamente es influida por los campos electromagnéticos siendo, a su vez, generadora de ellos. La interacción entre carga y campo eléctrico es la fuente de una de las cuatro interacciones fundamentales, la Interacción electromagnética.
La carga eléctrica es de naturaleza discreta, fenómeno demostrado experimentalmente por Robert Millikan. Por razones históricas, los electrones tienen carga -1, también notada -e. Los protones tienen la carga opuesta, +1 o +e. Los quarks tienen carga fraccionaria ±1/3 o ±2/3, aunque no se han observado aislados en la naturaleza.[1]
En el Sistema Internacional de Unidades la unidad de carga eléctrica se denomina culombio (símbolo C). Se define como la cantidad de carga que pasa por una sección en 1 segundo cuando la corriente eléctrica es de 1 amperio, y se corresponde con la carga de 6,24 × 1018 electrones aproximadamente
Conductancia eléctrica
Se denomina Conductancia eléctrica (G) de un conductor a la inversa de la oposición que dicho conductor presenta al movimiento de los electrones en su seno, esto es, a la inversa de su resistencia eléctrica (R), por lo que:
donde:
G = Conductancia en Siemens
R = Resistencia en Ohmios
La unidad de medida de la conductancia en el Sistema internacional de unidades es el Siemens.
Este parámetro es especialmente útil a la hora de tener que manejar valores de resistencia muy pequeños.
Conductividad eléctrica
La conductividad eléctrica es la capacidad de un cuerpo de permitir el paso de la corriente eléctrica a través de sí. También es definida como la propiedad natural característica de cada cuerpo que representa la facilidad con la que los electrones (y huecos en el caso de los semiconductores) pueden pasar por él. Varía con la temperatura. Es una de las características más importantes de los materiales.
La conductividad es la inversa de la resistividad, por tanto , y su unidad es el S/m (siemens por metro).
No confundir con la conductancia (G), que es la facilidad de un objeto o circuito para conducir corriente eléctrica entre dos puntos. Se define como la inversa de la resistencia:
La corriente eléctrica es el movimiento de los electrones por el interior de un conductor.
Corriente eléctrica a través de un material conductor
Un material conductor posee una gran cantidad de electrones libres que deja que pase la electricidad a través de el; que aunque existen en el material no pertenecen a algun átomo específico los cuales incluso sin aplicarles un campo eléctrico externo se mueven a través del material de forma aleatoria debido a la energía térmica, pero cumplen con la regla de que la suma de estos moviemientos aleatorios dentro del material es igual a cero. Esto es, dado un plano imaginario trazado a través del material, si sumamos las cargas (electrones) que entran y salen de él sobre ese plano, estas cantidades se anularían.
Cuando se aplica una fuente de voltaje externo a los extremos de un material conductor (como una batería), se estaría aplicando un campo eléctrico sobre los electrones libres provocando el movimiento de los mismos en dirección a la terminal positiva del material. Estos electones libres son entonces los portadores de corriente en los materiales conductores. Para una corriente de 1 amperio, 1 culombio de carga eléctrica estaria saliendo cada segundo a través de un plano imaginario trazado en el material conductor.
La corriente I en amperios puede ser calculada con la siguiente ecuación:
Donde:
Q = carga en culombios.
t = tiempo en segundos
Densidad de corriente
1. Ejemplos de ondas de distintas frecuencias; se observa la relación inversa con la longitud de onda.
Frecuencia, es una medida para indicar el número de repeticiones de cualquier fenómeno o suceso periódico en la unidad de tiempo. Para calcular la frecuencia de un evento, se contabilizan un número de ocurrencias de este teniendo en cuenta un intervalo temporal, luego estas repeticiones se dividen por el tiempo transcurrido.
Según el Sistema Internacional, el resultado se mide en hertz (Hz), en honor a Heinrich Rudolf Hertz. Un hertz es aquel suceso o fenómeno repetido una vez por segundo, 2 Hz son dos sucesos (períodos) por segundo, 3 Hz son tres sucesos (períodos) por segundo, 4 Hz son cuatro sucesos (períodos) por segundo, 5 Hz son cinco sucesos (períodos) por segundo, con esto demostramos teóricamente que casi siempre hay una relación en el número de Hertz con las ocurrencias. Esta unidad se llamó originariamente como ciclo por segundo (cps) y aún se sigue también utilizando. Otras unidades para indicar la frecuencia son revoluciones por minuto (rpm) y radianes por segundo (rad/s). Las pulsaciones del corazón o el tempo musical se mide como golpes por minuto (bpm, del inglés beats per minute).
Un método alternativo para calcular la frecuencia es medir el tiempo entre dos repeticiones (periodo) y luego calcular la frecuencia (f) recíproca de esta manera:
donde T es el periodo de la señal.
Frecuencia Angular
Es la frecuencia del movimiento senoidal,expresada en proporción del cambio de ángulo.Las unidades son radianes por segundo,y la abreviación es la minuscula griega ().La frecuencia angular está igual a
2 veces la frecuencia en Hz.Una revolución completa está igual a 2 radianes.
Pulsación
La pulsación, (también llamada velocidad angular o frecuencia angular), se refiere a la frecuencia del movimiento circular expresada en proporción del cambio de ángulo, y se define como veces la frecuencia.
Su unidad de medida es [ radianes / segundo ], y formalmente, se define con la letra omega minúscula: y, a veces, mayúscula: , a través de la fórmula:
donde la frecuencia es el número de oscilaciones o vueltas por segundo que se realizan.
Se utiliza la pulsación en electricidad, electrónica, movimiento circular, movimiento ondulatorio, oscilaciones, osciladores, ondas, etc.
Su utilización permite abreviar expresiones como
Fuerza electromotriz
La fuerza electromotriz (FEM) es toda causa capaz de mantener una diferencia de potencial entre dos puntos de un circuito abierto o de producir una corriente eléctrica en un circuito cerrado. Es una característica de cada generador eléctrico. Con carácter general puede explicarse por la existencia de un campo electromotor ε cuya circulación,∫ε ds, define la fuerza electromotriz del generador.
Se define como el trabajo que el generador realiza para pasar por su interior la unidad de carga positiva del polo negativo al positivo, dividido por el valor en Coulombs de dicha carga. Esto se justifica en el hecho de que cuando circula esta unidad de carga por el circuito exterior al generador, desde el polo positivo al negativo, es necesario realizar un trabajo o consumo de energía (mecánica, química, etcétera) para transportarla por el interior desde un punto de menor potencial (el polo negativo al cual llega) a otro de mayor potencial (el polo positivo por el cual sale).
La f.e.m. se mide en voltios, al igual que el potencial eléctrico.
Por lo que queda que:
Se relaciona con la diferencia de potencial entre los bornes y la resistencia interna del generador mediante la fórmula (el producto es la caída de potencial que se produce en el interior del generador a causa de la resistencia óhmica que ofrece al paso de la corriente). La f.e.m. de un generador coincide con la diferencia de potencial en circuito abierto.
La fuerza electromotriz de inducción (o inducida) en un circuito cerrado es igual a la variación del flujo de inducción Φ del campo magnético que lo atraviesa en la unidad de tiempo, lo que se expresa por la fórmula (Ley de Faraday). El signo - indica que el sentido de la f.e.m. inducida es tal que se opone a dicha variación (Ley de Lenz).
Iluminancia
En Fotometría, la iluminancia () es la cantidad de flujo luminoso emitido por una fuente de luz que incide, atraviesa o emerge de una superficie por unidad de área. Su unidad de medida en el SI es el Lux: 1 Lux = 1 Lumen/m².
En general, la iluminancia se define según la siguiente expresión:
donde:
La iluminancia se puede definir a partir de la magnitud radiométrica de la irradiancia sin más que ponderar cada longitud de onda por la curva de sensibilidad del ojo. Así, si es la iluminancia, representa la irradiancia espectral y V(λ) simboliza la curva de sensibilidad del ojo, entonces:
Tanto la iluminancia como el nivel de iluminación se pueden medir con un aparato llamado fotómetro. A la iluminancia que emerge de una superificie por unidad de área también se le denomina emitancia luminosa ().
Impedancia
La impedancia es una magnitud que establece la relación (cociente) entre la tensión y la intensidad de corriente. Tiene especial importancia si la corriente varía en el tiempo, en cuyo caso, esta, la tensión y la propia impedancia se notan con números complejos o funciones del análisis armónico. Su módulo (a veces impropiamente llamado impedancia) establece la relación entre los valores máximos o los valores eficaces de la tensión y de la corriente. La parte real de la impedancia es la resistencia y su parte imaginaria es la reactancia. El concepto de impedancia generaliza la ley de Ohm en el estudio de circuitos en corriente alterna (AC).El término fue acuñado por Oliver Heaviside en 1886.
En general, la solución para las corrientes y las tensiones de un circuito formado por resistencias, condensadores e inductancias y sin ningún componente de comportamiento no lineal, son soluciones de ecuaciones diferenciales. Pero, cuando todos los generadores de tensión y de corriente tienen la misma frecuencia constante y que sus amplitudes son constantes, las soluciones en estado estacionario (cuando todos fenómenos transitorios han desaparecido) son sinusoidales y todas las tensiones y corrientes tienen la misma frecuencia (la de los generadores) y tienen la amplitud y la fase constante.
El formalismo de las impedancias consiste en unas pocas reglas que permiten calcular circuitos que contienen elementos resistivos, inductivos o capacitivos de manera similar al cálculo de circuitos resistivos en corriente continua. Esas reglas sólo son válidas en los casos siguientes:
Si estamos en régimen permanente con corriente alterna sinusoidal. Es decir, que todos los generadores de tensión y de corriente son sinusoidales y de misma frecuencia, y que todos los fenómenos transitorios que pueden ocurrir al comienzo de la conexión se han atenuado y desaparecido completamente.
Si todos los componentes son lineales. Es decir, componentes o circuitos en los cuales la amplitud (o el valor eficaz) de la corriente es estrictamente proporcional a la tensión aplicada. Se excluyen los componentes no lineales como los diodos. Si el circuito contiene inductancias con núcleo ferromagnético (que no son lineales), los resultados de los cálculos sólo podrán ser aproximados y eso, a condición de respetar la zona de trabajo de las inductancias.
Cuando todos los generadores no tienen la misma frecuencia o si las señales no son sinusoidales, se puede descomponer el cálculo en varias etapas en cada una de las cuales se puede utilizar el formalismo de impedancias. Ver más lejos en este artículo.
Diagrama de Fresnel correspondiente al segundo ejemplo. El primer círculo sirve de guía a las tensiones de los dos generadores. El segundo para el ángulo recto entre la tensión del condensador y la de la resistencia.
La corriente que circula es:
Como los valores de tensión utilizados para los generadores eran valores eficaces, la corriente calculada también viene como valor eficaz: 91 mA en avance de fase 16,71° con respecto a la tensión de referencia.
La tensión entre los extremos de la resistencia es
La tensión entre los extremos del condensador es:
.
La tensión entre las extremidades del condensador está en retardo de 73,3° con respecto a la tensión de referencia. Como en el ejemplo precedente, la suma de los módulos de las tensiones (las que se medirían con un voltímetro) de la resistencia y del condensador (563 V) es más grande que la tensión total aplicada (398 V).
La tensión en el punto A del circuito será:
La tensión del punto A es más grande que la de cada generador.
Inductancia
En un Inductor o bobina, se denomina inductancia, L, a la relación entre el flujo magnético, y la intensidad de corriente eléctrica,I:
El flujo que aparece en esta definición es el flujo producido por la corriente I exclusivamente. No deben incluirse flujos producidos por otras corrientes ni por imanes situados cerca ni por ondas electromagnéticas.
Desgraciadamente, esta definición es de poca utilidad porque no sabemos medir el flujo abrazado por un conductor. Lo único que sabemos medir son las variaciones del flujo y eso sólo a través del voltaje
V inducido en el conductor por la variación del flujo. Con ello llegamos a una definición de inductancia equivalente pero hecha a base de cantidades que sabemos medir, esto es, la corriente, el tiempo y la tensión:
El signo de la tensión y de la corriente son los siguientes: si la corriente que entra por la extremidad A del conductor, y que va hacia la otra extremidad, aumenta, la extremidad A es positiva con respecto a la opuesta. Esta frase también puede escribirse al revés: si la extremidad A es positiva, la corriente que entra por A aumenta con el tiempo.
La inductancia siempre es positiva, salvo en ciertos circuitos electrónicos especialmente concebidos para simular inductancias negativas.
De acuerdo con el Sistema Internacional de Medidas, si el flujo se expresa en weber y la intensidad en amperio, el valor de la inductancia vendrá en henrio (H).
Los valores de inductancia prácticos van de unos décimos de nH para un conductor de 1 milímetro de largo hasta varias decenas de miles de Henrios para bobinas hechas de miles de vueltas alrededor de núcleos ferromagnéticos.
El término "inductancia" fue empleado por primera vez por Oliver Heaviside en febrero de 1886, mientras que el símbolo L se utiliza en honor al físico Heinrich Lenz.
El valor de la inductancia viene determinado exclusivamente por las características geométricas de la bobina y por la permeabilidad magnética del espacio donde se encuentra. Así, para un solenoide, la inductancia, de acuerdo con las ecuaciones de Maxwell, viene determinada por:
donde μ es la permeabilidad absoluta del núcleo, N es el número de espiras, A es el area de la sección transversal del bobinado y l la longitud de las líneas de flujo.
El cálculo de l es bastante complicado a no ser que la bobina sea toroidal y aún así, resulta difícil si el núcleo presenta distintas permeabilidades en función de la intensidad que circule por la misma. En este caso, la determinación de l se realiza a partir de las curvas de iman
El campo eléctrico es el modelo que describe la interacción entre cuerpos y sistemas con propiedades de naturaleza eléctrica. Matemáticamente se lo describe como un campo vectorial en el cual una carga eléctrica puntual de valor "q" sufrirá los efectos de una fuerza "F" que vendrá dada por la siguiente ecuación:
Esta definición indica que el campo no es directamente medible, sino a través de la medición de la fuerza actuante sobre alguna carga. La idea de campo eléctrico fue propuesta por Michael Faraday al demostrar el principio de inducción electromagnética en el año 1832.
Líneas de campo eléctrico correspondientes a una moneda con carga eléctrica positiva.
Un campo eléctrico estático puede ser representado con un campo vectorial, o con Lineas Vectoriales (lineas de campo). Las líneas vectoriales se utilizan para crear una visualización del campo. Se trazan en un papel en dos dimensiones, sin embargo se cree que existen en un espacio tridimensional. En realidad existen infintas lineas de campo, sin embargo se representan sólo unas pocas por claridad.
Graficamente se podría decir que es similar al campo magnético.
"Energ.C3.ADa_del_campo">Energía del campo
El campo almacena y mueve energía. La densidad volumétrica de energía de un campo eléctrico está dada por la expresión siguiente:
Por lo que la energía total en un volumen está dada por:
Intensidad de campo magnético
En electromagnetismo, la intensidad del campo magnético, H, es la causa de la inducción magnética, y nos indica lo intenso que es el campo magnético. En una bobina, su valor depende depende de la fuerza magnetomotriz, producto del número de espiras por la intensidad que circula por la misma. Ahora bien, cuanto más larga sea la bobina, más se dispersan las líneas de campo, dando como resultado una intensidad de campo más débil; por lo que se puede decir que, para una fuerza magnetomotriz constante, la intensidad de campo es inversamente proporcional a la longitud media de las líneas de campo, tal como se expresa en la siguiente ecuación:
Donde:
H: intensidad del campo en amperio-vuelta/metro (Av/m)
N: número de espiras de la bobina
I: intensidad de la corriente en amperios (A)
L: longitud de la bobina en metros (m)
Muchos autores denominan la intensidad del campo magnético, como inducción magnética, B. La diferencia entre B y H es que H describe cuan intenso es el campo magnético en la región que afecta, mientras que B es la cantidad de flujo magnético por unidad de área que aparece en esa misma región. B y H se relacionan de la siguiente manera:
Donde μ es la permeabilidad magnética del medio en el que aparece el campo magnético. Es una variable de proporcionalidad que según el sistema físico que se observe puede ser una constante, por ejemplo 4πx10^(-7) H/m en el vacío, un campo escalar dependiente del tiempo o de la posición, o incluso un tensor en el caso de los materiales anisotrópicos. La permeabilidad magnética también se puede expresar como:
en la cual es la inducción en el vacío y se llama vector intensidad magnética o excitación magnética. El vector es la magnetización que se define como el momento magnético por unidad de volumen.
Intensidad luminosa
En fotometría, la intensidad luminosa se define como la cantidad de flujo luminoso, propagándose en una dirección dada, que emerge, atraviesa o incide sobre una superficie por unidad de ángulo sólido. Su unidad de medida en el Sistema Internacional de Unidades es la candela (cd), que es una unidad fundamental del sistema. Matemáticamente, su expresión es la siguiente:
donde:
La intensidad luminosa se puede definir a partir de la magnitud radiométrica de la intensidad radiante sin más que ponderar cada longitud de onda por la curva de sensibilidad del ojo. Así, si es la intensidad luminosa, representa la intensidad radiante espectral y simboliza la curva de sensibilidad del ojo, entonces:
Intensidad luminosa y diferentes tipos de fuentes
En fotometría, se denomina fuente puntual a aquella que emite la misma intensidad luminosa en todas las direcciones consideradas. Un ejemplo práctico sería una lámpara fsdf. Por el contrario, se denomina fuente o superficie reflectora de Lambert a aquella en la que la intensidad varía con el coseno del ángulo entre la dirección considerada y la normal a la superficie (o eje de simetría de la fuente).
Unidades
Una candela se define como la intensidad luminosa de una fuente de luz monocromatica de 540 THz que tiene una intesidad radiante de 1/683 vatios por estereorradián, o aproximadamente 1.464 mW/sr. La frecuencia de 540 THz corresponde a una longitud de onda de 555 nm, que se corresponde con la luz verde pálida cerca del límite de visión del ojo. Ya que hay aproximadamente 12.6 estereorradianes en una esfera, el flujo radiante total sería de aproximadamente 18.40 mW, si la fuente emitiese de forma uniforme en todas las direcciones. Una vela corriente produce con poca precisión una candela de intensidad luminosa.
En 1881
Jules Violle propuso la Violle como unidad de intensidad luminosa. Fue la primera unidad de intensidad que no dependía de las propiedad de una lámpara determinada. Sin embargo fue sustituida por la candela en 1946.
Longitud de onda
.
La longitud de una onda es la distancia entre dos crestas consecutivas. Describe cuán larga es la onda. La distancia existente entre dos crestas o valles consecutivos es lo que llamamos longitud de onda. Las ondas de agua en el océano, las ondas de aire, y las ondas de radiación electromagnética tienen longitudes de ondas.
La letra griega "λ" (lambda) se utiliza para representar la longitud de onda en ecuaciones. La longitud de onda es inversamente proporcional a la frecuencia de la onda. Una longitud de onda larga corresponde a una frecuencia baja, mientras que una longitud de onda corta corresponde una frecuencia alta.
La longitud de ondas de las ondas de sonido, en el rango que los seres humanos pueden escuchar, oscilan entre menos de 2 cm (una pulgada), hasta aproximadamente 17 metros (56 pies). Las ondas de radiación electromagnética que forman la luz visible tienen longitudes de onda entre 400 nanómetros (luz morada) y 700 nanómetros (luz roja).
En el sistema internacional, la unidad de medida de la longitud de onda es el metro, al igual que cualquier otra distancia. Dado los órdenes de magnitud de este parámetro, por comodidad se suele recurrir a submúltiplos como el milímetro (mm), el micrómetro (μm) y el nanómetro (nm).
Relación con la frecuencia
La longitud de onda λ es inversamente proporcional a la frecuencia f, siendo ésta la frecuencia del movimiento armónico simple de cada una de las partículas del medio. No se debe confundir con la frecuencia angular ω:
donde λ es la longitud de onda, c es la velocidad de la onda, y f es la frecuencia. Para la luz y otras ondas electromagnéticas que viajan en el vacío, c = 299.792.458 m/s (186,282 millas/s), la velocidad de la luz. Para las ondas de sonido que se desplazan por el aire, c es aproximadamente 343 m/s (767 millas/hora).
Por ejemplo, la luz roja, con una frecuencia aproximada de 440 THz, tiene ondas de unos 682 nm de largo:
Al tratar ondas electromagnéticas, la velocidad de transmisión de éstas en el vacío es la velocidad de la luz (299,792,458 metros sobre segundo).
Medios diferentes al vacío
Las únicas ondas capaces de transmitirse a través del vacío son las ondas electromagnéticas. Cuando éstas penetran en un medio material, como puede ser el aire o un sólido, su longitud de onda se ve reducida de forma proporcional al índice de refracción n de dicho material, mientras que su frecuencia permanece invariante. La longitud de onda en dicho medio (λ') viene dada por:
donde:
La longitud de onda de las radiaciones electromagnéticas, sea cual sea el medio en que se transmitan, se expresa por lo general en función de la longitud de onda de éstas en el vacío, aunque no siempre esté indicado explícitamente.
Longitud de onda asociada a partículas [editar]
Louis-Victor de Broglie descubrió que todas las partículas que poseían una cantidad de movimiento tenían asociada una determinada longitud de onda. Es la denominada Hipótesis de De Broglie.
donde:
El cociente entre una constante muy pequeña y un denominador que depende de la velocidad de la partícula, hace que para objetos macróscopicos en movimiento las longitudes de onda asociadas a éstos sean imperceptibles por el ser humano (siendo estas menores que un fotón
El concepto de Permeabilidad Relativa es muy simple. Sin embargo, la medición y la interpretación de la permeabilidad relativa versus las curvas de saturación no lo es. Por ejemplo, hay evidencia de que la permeabilidad relativa puede ser una función de muchos más parámetros que la saturación de fluido. La temperatura, velocidad de flujo, historia de saturación, los cambios de mojabilidad y el comportamiento mecánico y químico del material de la matriz pueden todos jugar un papel en el cambio de la dependencia funcional de la permeabilidad relativa en saturación. La mejor definida de estas dependencias es la variación de la permeabilidad relativa con la historia de saturación; las curvas de permeabilidad relativa muestran histéresis entre los procesos de drenaje (fase mojante disminuyéndose) y los procesos de imbibición (fase mojante incrementándose).
Hay dos métodos básicos de obtener datos de Permeabilidad Relativa: estado estable o régimen permanente y estado inestable o régimen variable. Para el método de estado estable y un sistema de dos fluidos, las dos fases se inyectan a cierta relación volumétrica hasta que la caída de presión a través del núcleo y la composición del efluente se estabilicen. Las saturaciones de los dos fluidos en el núcleo son luego determinadas, típicamente pesando el núcleo o realizando cálculos de balance de masa para cada fase. La Permeabilidad Relativa se calcula de las ecuaciones de flujo.
El método de estado inestable está basado en interpretar un proceso de desplazamiento inmiscible. Para un sistema bifásico, un núcleo, en estado nativo (preservado) o restaurado a las condiciones de saturación que existan en el yacimiento, se inunda con una de las fases. Típicamente la fase de la inundación es agua o gas puesto que en el yacimiento una u otra de estas fases desplaza el aceite.
Permitividades absoluta y relativa
La permitividad de un material es usualmente dada como relación a la del vacío, denominándose permitividad relativa, (también llamada constante dieléctrica en algunos casos). La permitividad absoluta se calcula multiplicando la permitividad relativa por la del vacío:
donde es la susceptibilidad eléctrica del material. En la siguiente tabla se muestran las permitividades absolutas de algunos dieléctricos:
Potencia en corriente continua
Cuando se trata de corriente continua (DC) la potencia eléctrica desarrollada en un cierto instante por un dispositivo de dos terminales es el producto de la diferencia de potencial entre dichos terminales y la intensidad de corriente que pasa a través del dispositivo. Esto es,
(1)
Donde I es el valor instantáneo de la corriente y V es el valor instantáneo del voltaje. Si I se expresa en amperios y V en voltios, P estará expresada en Watts. Igual definición se aplica cuando se consideran valores promedio para I, V y P.
Cuando el dispositivo es una resistencia de valor R o se puede calcular la resistencia equivalente del dispositivo, la potencia también puede calcularse como
Cuando se trata de corriente alterna (AC) sinusoidal, el promedio de potencia eléctrica desarrollada por un dispositivo de dos terminales es una función de los valores eficaces o valores cuadráticos medios, de la diferencia de potencial entre los terminales y de la intensidad de corriente que pasa a través del dispositivo.
En el caso de un receptor de carácter inductivo (caso más común) al que se aplica una tensión v(t) de pulsación
ω y valor de pico Vo resulta:
Esto provocará una corriente i(t) retrasada un ángulo φ respecto de la tensión aplicada:
La potencia instantánea vendrá dada como el producto de las expresiones anteriores:
Mediante trigonometría, la anterior expresión puede transformarse en la siguiente:
Y sustituyendo los valores de pico por los eficaces:
Se obtiene así para la potencia un valor constante, VIcos(φ) y otro variable con el tiempo, VIcos(2ωt − φ). Al primer valor se le denomina potencia activa y al segundo potencia fluctuante.
Al ser la potencia fluctuante de forma senoidal, su valor medio será cero. Para entender mejor qué es la potencia fluctuante, imaginemos un receptor que sólo tuviera potencia de este tipo. Ello sólo es posible si φ = ±90º (cos±90º=0), quedando
caso que corresponde a un circuito inductivo puro o capacitivo puro. Por lo tanto la potencia fluctuante es la debida a las bobinas y a los condensadores. Efectivamente, las bobinas o los condensadores (ideales) no consumen energía sino que la "entretienen". La bobina almacena la energía en forma de campo magnético cuando la corriente aumenta y la devuelve cuando disminuye, y el condensador almacena la energía en forma de campo eléctrico cuando se carga y la devuelve cuando se descarga.
Componentes de la intensidad
Figura 1.- Componentes activa y reactiva de la intensidad; supuestos inductivo, izquierda y capacitivo, derecha
Consideremos un circuito de C. A. en el que la corriente y la tensión tienen un desfase φ. Se define componente activa de la intensidad, Ia, a la componente de ésta que está en fase con la tensión, y componente reactiva, Ir, a la que está en cuadratura con ella (véase Figura 1). Sus valores son:
[serta]
El producto de la intensidad, I, y las de sus componentes activa, Ia, y reactiva, Ir, por la tensión, V, da como resultado las potencias aparente (S), activa (P) y reactiva (Q), respectivamente:
La potencia aparente (también llamada compleja) de un circuito eléctrico de corriente alterna es la suma (vectorial) de la energía que disipa dicho circuito en cierto tiempo en forma de calor o trabajo y la energía utilizada para la formación de los campos eléctricos y magnéticos de sus componentes que fluctuara entre estos componentes y la fuente de energía.
Esta potencia no es la realmente consumida "util", salvo cuando el factor de potencia es la unidad (cos φ=1), y señala que la red de alimentación de un circuito no sólo ha de satisfacer la energía consumida por los elementos resistivos, sino que también ha de contarse con la que van a "almacenar" bobinas y condensadores. Se la designa con la letra S y se mide en voltiamperios (VA).
Su formula es:
Nota: como formula rapida para calcular en campo la intensidad de corriente teniendo como dato la potencia aparente es la siguiente (Pot. Ap x 3) / 2.
Es la potencia que representa la capacidad de un circuito para realizar un proceso de transformación de la energía eléctrica en trabajo. Los diferentes dispositivos eléctricos existentes convierten la energía eléctrica en otras formas de energía tales como: mecánica, lumínica, térmica, química, etc. Esta potencia es, por lo tanto, la realmente consumida por los circuitos. Cuando se habla de demanda eléctrica, es esta potencia la que se utiliza para determinar dicha demanda.
Se designa con la letra P y se mide en vatios (W). De acuerdo con su expresión, la ley de Ohm y el triángulo de impedancias:
Resultado que indica que la potencia activa es debida a los elementos resistivos.
Esta potencia no tiene tampoco el carácter realmente de ser consumida y sólo aparecerá cuando existan bobinas o condensadores en los circuitos. La potencia reactiva tiene un valor medio nulo, por lo que no produce trabajo útil. Por ello que se dice que es una potencia desvatada (no produce vatios), se mide en voltamperios reactivos (VAR) y se designa con la letra Q.
A partir de su expresión,
Lo que reafirma en que esta potencia es debida únicamente a los elementos reactivos.
La representación matemática de la potencia activa en un sistema trifásico equilibrado está dada por la ecuación:
Véase también
Reactancia